

Navigating the AI Frontier: Evolution, Workforce Dynamics and Ethics

- Founder
 Nural Research
- Product Manager
 Enterprise Al manufacturing start-up

Formerly

- Consultant
 McKinsey & Co.
- Choate Memorial Fellow
 Harvard University
- Natural Sciences (Physics)
 University of Cambridge

1.

What is AI in 2023 and who are the key actors?

How is AI influencing industries and the workforce?

2.

3.

Ethical considerations and emerging regulation

 \rightarrow Myth Debunking

Myth	Reality
AI and machine learning are the same	Machine learning is a subset of Al
Al will make humans obsolete in the workplace	Al works best when augmenting human work
Al will outpace human intelligence	Robust General AI is a distant future
Al makes more fair decisions than humans	Al exacerbates the bias embedded within datasets: Garbage in, garbage out
Data scientists and ML engineers are shaping the future of Al	AI is shaped by all key decision makers. Effective and ethical implementation requires interdisciplinary thought

What is AI in 2023 and who are the key actors?

2.

How is AI influencing industries and the workforce?

3.

Ethical considerations and emerging regulation

Traditional AI

VS

Generative Al

Generative AI has unlocked mass consumer and business adoption

Increased global spending:

Generative AI to Become a \$1.3 Trillion Market by 2032

Time to reach 100m users

(Visual Capitalist)

For discussion How does Generative AI link to the rest of the AI industry?

Al segments: Machine learning is the workhorse behind recent Al advancements

= Under ML / Reinforcement learning umbrella

• • • • •

\rightarrow Deeper dive into ML

ightarrow Data structures seen in industry

Structured

- Standardized data schema
- Easy to analyze and query
- Reduced storage potential
- Increased integration potential
- Can be difficult to amend

Semi-structured

- No pre-defined data schema
- Contains some structural properties or hierarchy
- Easier to store than unstructured data

e.g. JSON, CSV

Unstructured

- No clearly defined framework (e.g. free text, images)
- Fast to collect, slow to process
- Flexible schema leads to faster queries (no joins)

mongoDB. Data lakes

The Foundation Model Stack is Growing More Powerful

New ways to differentiate priorities of development Sophisticated teams can

FACEBOOK AI

[₩]Madrona

Google DeepMind

Bai

百度

Tencent

Industry focus: Industries requiring creativity or repetitive tasks are most impacted

Respondents across regions, industries, and seniority levels say they are already using generative AI tools.

Reported exposure to generative AI tools, % of respondents

"Al has risen from a topic relegated to tech employees to a focus of company leaders" -McKinsey

Business Functions: Al adoption is driving increased revenue and reduced costs

Area	Examples	Revenue impact	Cost impact
Risk	Impact & probability recommendation system, smart devices for safety	•	•
Strategy & Finance	Robotic process automation, auditing with NLP/ computer vision	O	•
Manufacturing	Stage by stage analytics for demand prediction, machine vision – quality control	•	•
HR	Al interviews, internal company chatbots	•	•
R&D	Trial automation, Novel data insights	•	O
Marketing & Sales	Tailored customer experiences	0	Ο

\rightarrow Implementing AI within a business

Typical AI investment allocation

Typical AI workflow

Workforce: AI will have the largest impact on knowledge work

4 workforce impacts of current AI technology

- 60% of current time could be automated for knowledge workers by 2045
- 2. Demand for existing AI related roles will increase
- 3. Roles requiring language understanding, but low expertise at highest risk of displacement
- 4. Creative roles will be impacted significantly and may face "self-competition"

New AI related roles will emerge unlocking new enterprise capabilities

Al engineer

Prompt engineer

Workforce: While generative AI has the largest automation impact in high wage jobs, AI will impact low wage roles most significantly

Midpoint automation adoption 1 by 2030 as a share of time spent on work activities, US, %

generative AI acceleration	ation	generative Al	acceleration	automat	ercentage-point acc ion adoption from g	eleration in enerative Al
	0	10	2	0	30	40
STEM professionals			•	—16——		
Education and workforce training		•		~~		
Creatives and arts management		•	15	~~		
Business and legal professionals			•			
Managers			99	→●		
Community services			•	9	→●	
Office support					•	′ →●
Health professionals		•	-66			
Builders					6	
Property maintenance		•	-6			
Customer service and sales				•6	6►●	
Food services					— 5	→●
Transportation services				●5-	•	
Mechanical installation and repair					●—5→●	
Production work					●-4-	•
Health aides, technicians, and wellness	5		●-4→			
Agriculture					●3+●	
All sectors ²					3►●	

Automation adoption per wage quintile, % in 2030, midpoint scenario

McKinsey

→ Looking ahead: Al industry

Levers

Enablers	 ✓ Big data ✓ Increased processing power – Moore's Law ✓ Abstracted ML platforms 	 ✓ Funding ✓ Demand for personalized experiences ✓ Human-level understanding
Challenges	 ✓ Regulation formation and navigation ✓ Explainability ✓ Liability 	 ✓ Edge-cases ✓ Data and concept drift ✓ Data ownership
Opportunities	 ✓ Addressing inequality ✓ Growth of non- English AI 	✓ Zero-shot learning

1.

How is AI influencing industries and the workforce?

2.

Ethical considerations and emerging regulation

3.

Artificial intelligence

+ Add to myFT

How actors are losing their voices to AI

Performers forced to compete with themselves as companies' use of technology for cloning prompts calls to update copyright law

\rightarrow What is ethical AI

Ethical AI considers:

- 1. The broader social externalities of AI use
- 2. Grand challenges to be solved leveraging Al

1. 2.

3.

Data sources

Modelling and training

Poor implementation by end user

Category	Detail	Risk level
Safety & performance	Poor performance in high-risk industries - Data drift, hallucination	•
	Social weapons – Misinformation and manipulation and deepfakes	•
	Autonomous weapons	0
Fairness & privacy	Bias – Reinforced by statistical distributions of datasets	•
	Data privacy	•
Externalities	Job loss	Φ
	Free acting Al	O

Regulation: Regulators are beginning to close the technology gap

EU AI act: Risk based approach

Note: LLMs were not predicted when initial act proposed

China: Interim Measures for the Management of Generative Artificial Intelligence Services

• Balancing innovation with regulation

Grading Foundation Model Providers' Compliance with the Draft EU AI Act

Source: Stanford Research on Foundation Models (CRFM), Institute for Human-Centered Artificial Intelligence (HAI)

	\$OpenAI	🕿 cohere	stability.ai	ANTHROP\C	Google	BigScience	🔿 Meta	Al21 labs			
Draft AI Act Requirements	GPT-4	Cohere Command	Stable Diffusion v2	Claude	PaLM 2	BLOOM	LLaMA	Jurassic-2	Luminous	GPT-NeoX	Totals
Data sources	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \circ$		0000	$\bullet \bullet \circ \circ$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	0000	0000	$\bullet \bullet \bullet \bullet$	22
Data governance	$\bullet \bullet \circ \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	0000	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \bullet \circ$	19
Copyrighted data	0000	0000	0000	0000	0000	$\bullet \bullet \bullet \circ$	0000	0000	0000	$\bullet \bullet \bullet \bullet$	7
Compute	0000	0000		0000	0000	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	0000	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \bullet$	17
Energy	0000	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \circ$	0000	0000	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	0000	0000	$\bullet \bullet \bullet \bullet$	16
Capabilities & limitations	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \bullet$	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	$\bullet \bullet \circ \circ$	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \circ$	27
Risks & mitigations	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	$\bullet \circ \circ \circ$	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	• • • •	$\bullet \bullet \circ \circ$	0000	$\bullet \circ \circ \circ$	16
Evaluations	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \circ \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	0000	$\bullet \circ \circ \circ$	$\bullet \circ \circ \circ$	15
Testing	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \circ \circ$	$\bullet \bullet \circ \circ$	0000	$\bullet \circ \circ \circ$	0000	0000	10
Machine-generated content	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	0000	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	0000	$\bullet \bullet \bullet \circ$	$\bullet \circ \circ \circ$	$\bullet \bullet \circ \circ$	21
Member states	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \circ \circ$		0000	0000	0000	$\bullet \circ \circ \circ$	0000	9
Downstream documentation	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	0000		$\bullet \bullet \bullet \bullet$	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \bullet \circ$	24
Totals	25 / 48	23 / 48	22 / 48	7 / 48	27 / 48	36 / 48	21 / 48	8 / 48	5 / 48	29 / 48	

Ethical and legal implementation

Impactful application

About Nural Research

$\mathbf{\zeta}$

00

Exploring how AI is being used to tackle global grand challenges

Exist to bridge the gap between those going on to utilise AI and those developing them

AI and data science advisory

Subscription – Weekly newsletter and articles

About Me

- Founder Nural Research
- Former Choate Memorial Fellow at Harvard focusing on Data Science
- Passionate about democratising knowledge and building without limits

Connect

Website: <u>www.nural.cc</u> LinkedIn: Marcel Hedman

Thank you for listening

Marcel Hedman Nural Research

Møller Institute Limited Churchill College, Storey's Way, Cambridge CB3 0DE

ľ

Context:

Ignitarium is a product engineering design company based in India building products including a realtime noise suppression system

Problem:

Traditional approaches to noise suppression are not fully effective (incl. frequency filters and traditional DSP algorithms)

Solution:

The company implemented a deep learningbased(GRU) small memory noise suppression system Works on devices with low available RAM

Outcome:

Noise suppression on stationary and non-stationary noise

Fig.(a) Before and after noise suppression (time domain view)

\rightarrow Disney

DISNEP

Context:

Disney, founded 1923, has always stored archives of its content for future creators to draw inspiration from. Previously, physical archives and now digital

Problem:

Querying 100 years worth of content is time consuming and difficult without corresponding metadata tags

Solution:

Disney implemented a deep learning tagging system to augment the tagging process ("content genome")

Trained to distinguish similar features within animations

Taxonomy must be robust

Outcome:

Specific, tailored searches (e.g. explosions) Reduced manual watch time Potential to disrupt future of video search